یک‌صد – تعریف جوشکاری ذوبی

جوشکاری ذوبی رویشی است که در آن، لبه‌های مورد اتصال را ذوب کرده و مذاب دو قطعه را به کمک مفقوت برکنده، و یا بدون آن درهم می‌آموزند؛ سپس انجماد صورت می‌گیرد (شکل ۱) و بین ذرات دو قطعه جاذبه به وجود می‌آید.

شکل ۱

۱-۲ جوشکاری با شعله گاز (آکسی استیلین): در این فرآیند برای ذوب کردن لبه‌های هم‌طول که در شکل ۲ مشاهده می‌شود از حرارت شعله سوختن گاز استفاده می‌شود.

شعله باعث ذوب شدن لبه‌های گاز کار شده و از مخلوط‌ها آن‌ها حوضه‌های ذوبی را به وجود می‌آورد که بسیار انجماد دو قطعه یک بارچه متضمن. درجه حرارت شعله سوختن آکسیژن و استیلین (شکل ۳) در حدود ۳۵۴۲۰°C تا ۳۵۴۲۲°C است.

مشعل جوشکاری حرارت تانسی از سوختن آکسی استیلین را به طرف کار هدایت می‌کند.

شکل ۲

شکل ۳
تذکر مهم: همان‌طور که می‌دانید شعله‌ی سوختن استیلن با اکسیژن دارای درجه حرارت بسیار زیادی است، لذا موقعیت کار با شعله مراقب دست و لباس و سر و صورت خود و اطرازی از سوختن بپانبد (شکل ۱۲).
از تجزیه آب‌های الکتریکی آب هم می‌توان کربن دی‌اکسید تهیه کرد.

این روش برهنه‌تر است و لذا اقتصادی‌تر نیز است.

غاز اکسیژن تحت فشار همواره فعال است و باعث سوختن گاز‌ها و مواد قابل استفاده می‌شود و لیت خود به تنهایی قابل سوختن نمی‌باشد. گاز اکسیژن با گاز‌های قابل استفاده به راحتی ترکیب شده و شعله‌ور می‌گردد (فرمول سوختن کامل گاز استیلن با گاز اکسیژن را مشاهده کنید).

$$\text{H}_2\text{O} \rightarrow \text{H}_2 + \frac{1}{2}\text{O}_2$$

فرمول الکترولیز آب

$$\text{C}_2\text{H}_4 + \frac{5}{2}\text{O}_2 \rightarrow 2\text{CO}_2 + \text{H}_2\text{O} + 3200^\circ\text{C}$$

گرمای درجه حرارتی معادل بخار آب + پی اکسید کریستال + اکسیژن + استیلن

$$\text{H}_2\text{O} \rightarrow \text{H}_2 + rac{1}{2}\text{O}_2$$

$$\text{C}_2\text{H}_4 + rac{5}{2}\text{O}_2 \rightarrow 2\text{CO}_2 + \text{H}_2\text{O} + 3200^\circ\text{C}$$

گاز نفت؛ (پروپان و بوتان) که در لحیم کاری سخت و برشکاری و گرم کاری قطعات به کار گرفته می‌شود (شکل ۵-۲). نیترات‌زن؛ که در گوشکاری هایی که با های تحت فشار انجام شود (گوشکاری و برشکاری زیر آب) به کار می‌رود و لیت از نظر حرارتی کم‌تری دارد، اما این مزیت را دارد که از نظر شعله‌ور به خود منفی نمی‌شود.

$$\text{C}_2\text{H}_4 \rightarrow 2\text{CO} + \text{H}_2$$

شکل ۵-۲ برشکاری با گاز
5-1-2 طرز تهیه اکسیژن از هوا: مراحل مختلف

تهیه اکسیژن از هوای مایع (شکل 7-2) به شرح زیر است:

- افزودن خلوص هوا و جدای کردن ناخالصی‌ها (گرد و غبار)
- دی اکسید کریتن و ...
- متراکم کردن (از 6 تا 2 4000 kg/cm²)
- سردکردن هوای فشرده تا به مایع تبدیل شود (معمولاً در فشار 39 آتنسفر و دمای 1400°C).
- در جداسازی از هوای مایع، با کم کردن فشار، اکسیژن به صورت مایع باقی می‌ماند که به همین صورت مایع در ظرف‌های مخصوص به پازار عرضه می‌شود. یک لیتر اکسیژن مایع معادل 85 لیتر اکسیژن به صورت‌گاز در درجه حرارت 1500°C خواهد بود.
- اکسیژن به صورت‌گاز تحت فشار تا 16 آتنسفر در کیسول‌های معمولی با ظرف‌های متفاوت برای استفاده‌های متفاوت به پازار عرضه می‌شود (شکل 8-2).
جدول ۲-۲۲ نسبت مخلوط قابل انفجار استیل‌بن با اکسیژن یا هوا

<table>
<thead>
<tr>
<th>درصد اکسیژن</th>
<th>درصد استیل</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۹۷/۳</td>
<td>۱</td>
</tr>
<tr>
<td>۰</td>
<td>۱۸</td>
<td>۲</td>
</tr>
<tr>
<td>۷</td>
<td>۹۳</td>
<td>۳</td>
</tr>
</tbody>
</table>

با دو ایزوک در اغلب موارد آلی به مقدار منفی‌تر حل می‌شود. به‌همین‌رو در حال استیل‌بن، می‌توان آنتی‌سنت که در شرایط خاصی، جدول ۲-۱۲ را در خود حل می‌کند. استیل‌بن از هوا یا کمی سنتگین تر است، در صورتی که تحت فشار فرار گیرد حتی به‌صورت خالص، خود به خود تجزیه و منفجر می‌شود. در صورتی که با هوا یا اکسیژن مخلوط شود، این قابلیت انفجار افزایش می‌یابد. با توجه به جدول ۲-۱۲، این مورد با ارقام مربوطه در جدول است. سنتگ کاربید با آب ترکیب می‌شود و در مولفه‌ها با آب روی کاربید می‌رود با کاربید در آب سقوط می‌کند و گاز استیل‌بن برای مصرف جوش‌سازی یا پرینگاری تولید می‌شود. در شکل ۲-۹، جکوگن کاربید کاربید با آب مشاهده کنید.

شکل ۲-۹

شکل ۲-۱۰

شکل ۲-۱۲ طرز تهیه استیل‌بن: از ترکیب کاربید با آب گاز استیل‌بن به‌دست می‌آید. این فعال و افزایش تند و گرما ژر است و آب را گرم می‌کند و گاز حاصل استیل‌بن است جوی با کربن مشعل شده است (شکل ۲-۱۱).

\[
\text{CaC}_2 + 2\text{H}_2\text{O} \rightarrow \text{C}_2\text{H}_4 + \text{Ca(OH)}_2
\]

آب آهک گاز استیل کاربید پس ماده اولیه تولید گاز استیل‌بن کاربید با کربون‌سیم (CaC_2). است.

شکل ۲-۱۸ طرط تهیه کاربید: کاربید با کربن‌سیم خود یک محصول صنعتی است که آن را در شکل ۲-۱۲ مشاهده می‌کنید. کاربید از ترکیب آهک زنده (CaO) با زغال کک (C)، در کوره‌های الکتریکی به‌دست می‌آید.

\[
\text{CaO} + 3\text{C} \rightarrow \text{CaC}_2 + \text{CO}
\]

گاز کاربید زغال آهک زنده کک منواکسیدکن.
کاربید بسیار جالب گازی است که در شبیه‌های سربسته‌ای
۵ کیلویی نگهداری می‌شود.
همچنین، کاربید را می‌توان به صورت غوطه‌ور در نفت
سفید نگهداری نمود تا از رطوبت‌ها در امان باشد (شکل ۱۲-۲).

تذکر مهم! استفاده از کاربید به عنوان تفريح و
سرگرمی و آتش بزی با خطرات زیادی همراه است.
هیچ گاهی نشانی ندادی را به خطر نبندید.

جدول ۳-۳ نیز برای خواندنی گاز‌های سوختنی

<table>
<thead>
<tr>
<th>درجه حرارت شعله</th>
<th>درجه حرارت شعله</th>
<th>گاز سوختنی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>شعله به °C</td>
<td></td>
</tr>
<tr>
<td>۱۳۰۹۰</td>
<td>۳۰۸۷</td>
<td>گاز استیلر</td>
</tr>
<tr>
<td>۸۹۶۰</td>
<td>۲۵۲۸</td>
<td>گاز طبیعی</td>
</tr>
<tr>
<td>۲۲۲۴۰</td>
<td>۲۵۶۷</td>
<td>گاز برونا</td>
</tr>
<tr>
<td>۲۱۴۲۰</td>
<td>۲۴۲۰</td>
<td>گاز برونا</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>گاز نیتروزن</td>
</tr>
</tbody>
</table>

سر مشعل‌های با اندام‌های نازل خروجی برای استفاده
گاز‌های بوتان - برونا و گاز نیتروزن در دسترس است با اصولاً
مشعل پراشکاری مخصوص بوتان ساخته می‌شود.
گاز شیره و گاز طبیعی در لوله‌های گاز شیره جریان
دارد و لی‌گاز‌های بوتان و برونا (و اخیراً بنا نام
CNG) در سبزه‌تربیت‌ها با در مخلوطی مخصوص به خود به حالت مایع عرضه
می‌شوند.
برای استفاده از این گاز‌ها برای هزینه‌گاز رگولاتور مخصوص
به خود همان گاز لازم است (شکل ۱۲-۲).

شکل ۱۲-۲- کیسول و رگولاتور بوتان

استیلمن ماشینه به‌وسیله گازهای CNG در جوشکاری از نامطلوب تدریک.
این گازها عموماً در گرمکاری فلزات و گرم کردن هویه‌ی لحیم کاری و در لحیم کاری سخت با شعله و همچنین در پرتابکاری فلزات آهنی به صورت دستی و انواعی به کار می‌رود (شکل ۱۴-۲).

مشعل‌های گرم‌کاری طوری ساخته شده‌اند که از هوا به عنوان عامل سوختن گاز‌های بوتان و بروپان در مشعل سوخته و جهت گرم کردن هویه‌ی لحیم کاری و قطعات فلزی مورد استفاده قرار می‌گیرد.

تشکرم‌های رها شدن گاز سوختنی در فضاهای کوچک و یا نشست‌های گونه گازهای بسیار مخاطره‌آمیز است. در این مورد هشدارهای بدری توسط شرکت ملی گاز ایران از رسانه‌های صوتی و تصویری به شکست می‌شود، پس جوشکارانی که با این گونه گازها سروکار دارند باید همواره مراقب بوده و تمام نکات ایمنی را رعایت نموده و هشدارها را کاملاً جدی بگیرند.
جدول ۲-۴- طبقه‌بندی سیم جوش‌های فلایر مدل (Filler metal)

<table>
<thead>
<tr>
<th>کاربرد در جوشکاری با شعله‌گاز</th>
<th>رنگ پلاک</th>
<th>مشخصات</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>فولادهای کرین و فولادهای کم آلیاژ</td>
<td>خانواده ۹۲</td>
<td>A ۴.۱</td>
<td>سیم جوش‌های عاملی با طول استاندارد ۷/۴ میلی‌متر بدون روش تولید و عرضه می‌شود. برای جلوگیری از زنگ زدگی سطح آن‌ها را با یک لاشه نازک مسی روبکس کنند. همین دلیل در مواردی به آن‌ها سیم سوار هم می‌گویند. این سیم جوش‌ها در استاندارد مطالب جدول ۴-۸ در هفت طبقه دسته‌بندی می‌شوند و کاربرد هر کدام از آن‌ها نیز آمده است.</td>
</tr>
<tr>
<td>آلومینیوم و آلبانیا آن</td>
<td>خانواده ۹۲</td>
<td>A ۴.۵</td>
<td></td>
</tr>
<tr>
<td>سخت‌کاری سطحی فولادهای آلیاژی مختلف</td>
<td>خانواده ۹۲</td>
<td>A ۴.۵</td>
<td></td>
</tr>
<tr>
<td>جوشکاری جدیدا</td>
<td>خانواده ۹۰</td>
<td>A ۴.۶</td>
<td></td>
</tr>
<tr>
<td>سخت‌کاری سطحی</td>
<td>خانواده ۸۰</td>
<td>A ۴.۷</td>
<td></td>
</tr>
<tr>
<td>فولادهای زنگ‌زده</td>
<td>خانواده ۹۵</td>
<td>A ۴.۸</td>
<td></td>
</tr>
<tr>
<td>مس و آلبانیا مس</td>
<td>خانواده ۷۸</td>
<td>A ۴.۹</td>
<td></td>
</tr>
</tbody>
</table>

۳-۲- تجهیزات جوشکاری با شعله‌گاز (اکسی استیل)

تجهیزات ساده‌ای جوشکاری با شعله‌گاز عبارتند از:

۱- کپسول اکسیژن
۲- کپسول استیل
۳- رگولاتور با دستگاه تخلیه فشار اکسیژن
۴- رگولاتور با دستگاه تنظیم فشار گاز سوختنی
۵- شیل‌بندی هدایت گاز اکسیژن و استیل
۶- مشعل‌های جوشکاری
۷- فندک جوشکاری
۸- عینک جوشکاری
۹- آجار
۱۰- سوزن سر مشعل باک‌کن

*OFW=OXY Fuel Welding*


این شیر فلکه در زمانی که کیسول در سرویس گازرسانی قرار ندارد به وسیله یک کلاهک فولادی محافظت می‌شود تا شیر فلکه در حمل و نقل و انتقال آسیب و صدمه نیابد کلاهک به رنگ سرکیسول بیج می‌شود (شکل ۱۶-۲).

نکته‌ای دیگر: جانشین موقع حمل و نقل کیسول با بهره دیگر شیر فلکه کیسول یا در انتظاری به کلاهک شود گاز اکسیژن با فشار پیش از اندازه از کیسول خارج می‌شود و کیسول در جهت عکس خروج گاز حرکت می‌کند و خطرات زیادی به دنبال دارد.
بعضی از کیسول‌ها در قسمت کف یکی گرد با چهار
گوش دارند و بعضی از کیسول‌ها در قسمت کف گوده به طرف
داخل دارند. تا کیسول بتواند راحت رود زمین قرار گیرد (شکل
۲۱۸). کیسول‌های اکسیژن عموماً با رنگ آبي رنگ آمیزی
می‌شوند.

\[ Q = P \times V \]

حجم × فشار = ظرفیت

\[ Q = 150 \times 40 = 6000 \text{ Lit} \]

شکل ۱۸–۲۱۸ گوده ته کیسول اکسیژن

شکل ۱۹–۲۱۹ کیسول استیلی: به ذخیره‌سازی گاز
استیلین در کیسول تدابیری خاص لازم است. جوی نیازی به
استیلین را تحت فشار زیاد در کیسول ذخیره نمود.
در موقع ساخت کیسول‌های استیلین (شکل ۱۹–۲۱۹) آن را
از ماده آی بر می‌کند که پس از حرارت دادن به جسمی مخلخل
تبدیل می‌شود سپس مقداری مایع استیلن (CH₃COCH₃) در
کیسول ریخته و کیسول استیلین را از گاز بر می‌کند.
نگاهی نمایند که موقعیت کار و استفاده از کیسول‌های گاز
استیلین و در موقعیت مورد کیسول باید میزان مایع استیلن
شود و در صورت لزوم اضافه شود. تا امکان حل کردن گاز کافی
در داخل مایع استیلن امکان بذری نباشد و کیسول به اندازه استاندارد
خود گاز را در خود ذخیره کند.

شکل ۱۹–۲۱۹ کیسول استیلین و کلاهک آن

---

۱ ماده داخل مخلخل شامل سیمان مخصوص زغال چوب ـ آزمایش و مشابه مخلخل سیلیس دار است.
گاز استیلین در مابین استیل حل شده و فشار گاز درون کیسول زیاد نمی‌شود (شکل ۲-۲۱). در حقیقت هم‌جمله داخل کیسول به فضا‌های کوچک‌تر تقسیم شده و هم سطح نام گاز استیلین با مابین استیل گسترشده و بر اثر قطع بیشتر و ضخامت کنتری است و دوباره و ارتفاع آن نسبت به کیسول اکسیژن کمتر است.

شکل ۲-۲۱ - فضای داخل کیسول استیلین

حجم داخلی کیسول استیلین لیتر ۴۰ = ۷ لیتر

لیتر ۶/۱۶ = ۱۱/۴۷ = مقدار استیل به طور تقریب ۱۶ لیتر

لیتر ۶/۰۰ = ۳۷۵ = Q = فشار کیسول استیلین

۶ متر مکعب است (شکل ۲-۲۱).

۳-۲۳- فشار کیسول‌های معمولی استیلین: حجم داخل کیسول استیلین تقریب‌اً ۴۰ لیتر است و ۴۱٪ آن را مایع استین اشغال می‌کند.

۱۵۰ bar یا ۱۵ kg/cm² (بعنی وقی) کیسول بر استیل می‌تواند ۳۷۵ لیتر استیلین را در خود حل کند. پس فشار کیسول استیلین هم مثل کیسول اکسیژن ۶۰۰۰ لیتر یا ۶ متر مکعب است (شکل ۲-۲۱).

نکته مهم اطلاع استاندارد برای اتصال رگولاتور به کیسول محوری گاز قابل استعمال از بیج چپ گرد استفاده می‌کند (شکل ۲-۲۲).

۴-۲۳- رنگ ظاهر کیسول‌های گاز و اتصالات: آنها: برای تشخیص گاز داخل کیسول‌ها و جلوگیری از تنشیات هنگام استفاده از کیسول‌ها به‌دنبال سیلندرهای گاز را با رنگ استانداردهای رنگ‌آمیزی می‌کنند که در جدول ۵-۲ مشاهده می‌کنید.

همچنین برای تعیین رگولاتور اکسیژن و گازهای غیرقابل استعمال از بیج چپ استفاده می‌شود.
جدول ۵-۲۳- رنگ کپسول‌های مختلف

<table>
<thead>
<tr>
<th>رنگ کپسول</th>
<th>محل اتصال</th>
<th>گاز داخل کپسول</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبی غیر‌مسیز</td>
<td>راستی</td>
<td>اکسیژن</td>
</tr>
<tr>
<td>قرمز</td>
<td>جنوبی</td>
<td>استیلن و هیدروژن</td>
</tr>
<tr>
<td>بالا راهی</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۲۳-۲۳- کپسول اکسیژن که به خط لوله گاز می‌رساند.

شکل ۲۴-۲۴- الف

شکل ۲۴-۲۴- ب

۵-۲۳- بست مرکزی اکسیژن: در کارگاه‌های که جند نفر جوشکار هرمزند به کار جوشکاری مشغول هستند برای سهولت و انجم کار بدون وقت وقفه کپسول اکسیژن را به سیستمی یک کلکتور، مطابق شکل ۲۳-۲۳- به هم وصل می‌کنند.

مطابق استاندارد به وسیله‌ی لوله‌های فولادی که به سیستم‌های سفید رنگ کرده‌اند کپسول اکسیژن را به محل‌های جوشکاری هدایت می‌کنند (شکل ۲۴-۲۴- الف و ب). نیز در این لیند دو دسته کپسول به کار گرفته می‌شوند: یک دسته کپسول‌های در حال گازرسانی و دسته دیگر کپسول‌های بر که به سیستم وصل و آماده مصرف هستند.

زمینه‌ی کپسول اکسیژن خالی می‌شود، سپس فلکه‌ی کپسول بر را باز کرده و وارد مدار گازرسانی می‌کنند و شیر فلکه‌ی کپسول خالی را بسته و از مدار خارج کرده و به محل کپسول‌های خالی هدايت می‌کنند تا به موقع جهت شارژ به کارخانه‌ی تولید اکسیژن حمل شود.
تذکر مهم: جنگ گاز اکسیژن با مواد روانی و جرب
ترکیب انفجار گوش در از جرب کردن و روغن کاری
اتصالات گاز اکسیژن و حتی از رساندن دست جرب به
آنها خودداری کنید.

شکل ۲۵- گاز استیلین از کبسول به خط لوله گاز هدایت می‌شود.

شکل ۲۶- ۲- الف

شکل ۲۶- ۲- ب

پس مرکزی استیلین: اساس عمل نباهتی
استیلین نیز به همان روشی است که در مورد گاز اکسیژن اجرا
می‌شود، یعنی یک گروه کبسول در حال بهره‌برداری است و
دسته دیگر آماده به کار به صورت ذخیره تدارک شده است نا
امکان مصرف داخلی گاز وجود داشته باشد (شکل ۲۵- ۲).
با استفاده از پست مرکزی اکسیژن با پست مرکزی استیلین
در یک کارخانه با کارگر آموزشی می‌توان بر تعداد کم‌تری کبسول
تعداد زیادتری افراد چون کارگران به هم زمان به کار گرفت و همیشه
کبسولات را با تعداد بیشتر در اتوبوس کبسولی ذخیره و آماده
استفاده پاسند.

البته می‌توان به جای تعداد زیادی کبسول از یک مولد
استیلین بزرگ فشار قوی از نوع سفید استفاده کرد. گاز از
محل تولید با توزیع به وسیله لوله‌های فولادی که از نظر لنزی
کامل نیز شده به محل مصرف هدایت می‌شود (شکل ۲۶- ۲-
الف و ب). رنگ لوله‌های هدایت گاز استیلین به رنگ بلوطی
رنگ آمیزی می‌شود.

نکته مهم: همیشه به خاطر داشته باشید که در
انتقال گاز استیلین از اتصالات با لوله‌های مسی که
صداردند خالص است استفاده نشود جون مس خالص
با استیلین ترکیب قابل انفجار می‌دهد.
نهایی استیلن می‌توان از مولد‌گاز استیلن هم استفاده کرد، به این ترتیب که سیگ باربید را در دستگاهی به نام مولدگاز استیلن با آب ترکیب کرده و گاز استیلن مورد نیاز برای یک مصرف جوش‌کاری تولید می‌کنید. در شکل ۲۷ مولد استیلن باز بزرگ مشاهده می‌کنید که کاربید به صورت قطعات ریز شده در محفظه با ریخته شده و امکان شار زنجیرهای فراهم است و این قطعات کاربید به‌طور اتوماتیک با جریان بردار به درون آب سقوط می‌کند و گاز استیلن تولید شده از قسمت خروجی که در بالای شکل قرار دارد خارج و به طرف لوله کشی گاز استیلن هدایت می‌شود. این روشی است که در قدمی متناول بوده و لی از روش پیش از کیسولهای استیلن استفاده می‌شود.

شکل ۲۷

شکل ۲۸

شکل ۲۹

شکل ۳۰
49-3-۲ مولود ریزشی: مولدهای نوع ریزشی در کارگاه‌های کوچک امروزه هم کم و بیش مورد استفاده است. در این نوع مولدها آب روزانه می‌زند و با ان ترکیب می‌شود. این مولده بکی از ساده‌ترین و منداناوی ترین مولدها در ایران است. نکته ۲۹-۳۲ بزرگترین مخزن اصلی آب را نشان می‌دهد.

اکنون به شکل ۲-۳۲ توجه کنید: با بزرگترین نسخه آب شماره (۱) به طور آنوماتیک و مداوم هر بار مقداری آب به درون مخزن کشو مانند شماره (۲) روی کار بید می‌زند و گاز استیلین تولید می‌شود. این گاز از طریق لوله شماره (۳) به قسمت بالایی مخزن اصلی رفته و در آن جا ذخیره می‌شود.

فسار گاز ذخیره شده به وسیله‌ی مانومتر شماره (۴) مشخص می‌شود. این فشار هیچ‌گاه نباید از ۱۱۵ kg/cm² (۵) bar تجاوز کند.

گاز ذخیره شده در مخزن از طریق لوله و کبسول حفاظتی (۵) به مشعل هدایت می‌شود.
به مانومنتر شکل ۳۳-۳ توجه کنید که روزی صفح قرار دارد.

در مولودهای ریزشی از فعل و انفعال کاربید با آب در محفظه کنش مانند آب ایکس به وجود می‌آید که Ca(OH)۲ برمی‌کندی کاربید و خوشه‌کاری کاربیدی ندارد. موقعیت شارژ مواد، این ظرف باید میزان شود و نتیجه‌ی نصف حجم آن از کاربید با ابعاد تعیین شده بر شود و درست در محل خود قرار گیرد (شکل ۲۴-۳).

همچنین باید سطح آب در مولود کنترل شود، بنی‌آب به سطح تعیین شده در شکل ۲۵-۲ برسبد.

لازم است آب درون کسول حفاظتی نیز کنترل شود، آن‌گاه تمام درهای مولود (در اصل مخزن) با شماره‌ی ۶ و در محل شارژ کاربید شماره ۷ و شیرهای شماره ۸ و ۹ بسته شود.

(شکل ۲۴-۳). اکنون دستگاه آماده است و جنانجمه شیر آب شماره ۱) باز شود گاز تولید می‌شود و فشاری بر این شماره ۴) فشار گاز نشان می‌دهد. جنانجه فشار گاز زیاد شود سوپاب اطمینان شماره ۶) باز می‌شود و مقداری آب خارج می‌شود و فضای بالای آب زیادتر شده در حین حفظ افزایش یافته و فشار گاز کم می‌شود.
وقتی برای تولید گاز استیلن شیر آب بالای مخزن کاربید را باز می‌کنیم (شکل ۳۷) آب روا کاربید می‌ریزد و گاز استیلن تولید می‌شود.

در اینجا باید کنترل نشتن گاز با آب صابون انجام شود و همجذین قبل از شروع به کار، محل هایی که امکان نشتن گاز در آنها وجود دارد با آب صابون کنترل گردید. در شکل ۳۸ دربوش بالایی مخزن آب که گاز در زیر آن جمع می‌شود با پرس و آب صابون کنترل می‌شود.

محل دبگری که با آب صابون کنترل می‌شود (شکل ۳۹).

ناگفته نماند اتصالات لوله‌های هدایت گاز استیلن و شیلنگ‌هایی که گاز استیلن در آنها جریان دارد مطالبی انجه‌که در قسمت اینم بیان شده باید از جهت نشتن گاز کنترل شود.
۰۱-۳-۲۱- استوانه‌هی حفاظتی (کیسول حفاظتی): خروج گازهای از مواد استیلن با خط لوله استیلن و قبل از ورود به شیلنگ‌های لاستیکی از نظر ایمنی بايد مسیر استوانه‌ی حفاظتی را طی کند (شکل ۴۱-۲۲).

این امر موجب می‌شود که گاز اکسیژن نتواند به داخل مواد با خط لوله گاز برگشت کند یا به اصطلاح شعله پس زند (به دلیل تغییر فنی یا بد کارکرد مسئول گاهی اکسیژن به سیستم گاز استیلن تفویش می‌کند و شعله پس زند). جناب شیلنگ گاز هر دلیل آتش بگیرد یا از سیستم یکجا تغییر می‌دهد. شعله و آتش به داخل مخزن ذخیره گاز مواد به سیستم کیسول حفاظتی جلوگیری می‌کند و آتش مهار می‌سوزد.

۵۱-۳-۲۱- همانطور که در شکل ۴۱-۲۲ تشویق داده شده است گاز موقع ورود به استوانه‌ی حفاظتی به صورت حباب از آب عبور کرده و در بالای سطح آب جهت مصرف آماده می‌شود و چنانچه شعله پس زند و شعله تا روی آب هم رسیده باشد عبور شعله از استوانه آب درون کیسول حفاظتی غیرممكن است؛ در نتیجه، آتش مهار می‌سوزد و خطر انفجار مواد با خط لوله گاز از بین می‌رود.
در شکل ۲-۴۳ نوع دیگری از کیسول حفاظتی مشاهده می‌شود. گاز از طریق لوله d وارد و از طریق شیب F گاز به طرف مشعل می‌رود. شیر G مخصوص کنترل سطح آب در کیسول حفاظتی است و از طریق لوله g آب لازم اضافه می‌شود.

نکته مهمی: به منظور اطمینان از نحوه کار کیسول حفاظتی قبل از شروع جوشکاری سطح آب داخل کیسول حفاظتی را با وسیله‌ی شیر روی بدنه استوانه کنترل کنید و در صورت کمبود آب شیر ورودی گاز را بندید و از طریق قیف مقدار لازم آب اضافه کنید.
شیر اطمینان خشک: این وسیله مانند شیر یک طرفه عمل می کند و منع عبور گاز مخلوط به داخل کبسول می گردید (شکل ۴۴).

شکل ۴۴—شیر یک طرفه بعد از رگولاتور

۱۱ ۲—رگولاتور یا دستگاه کاهش دهنده فشار گاز: هم گاز سوختی و هم گاز اکسیژن، در کبسول دارای فشار زیادی هستند. در حالی که در عمل به گاز با فشار کمتری نیاز است لذا برای کبسول و مشعل جوشکاری مطابق (شکل ۲۵) یک رگولاتور با تنظیم کننده فشار قرار می دهد.

شکل ۲۵—رگولاتور اکسیژن و استیبان

رگولاتور دارای دو مانومتر (فشارسنج) است که یکی فشار گاز در کبسول و دیگری فشار گازی را که به مشعل هدایت می شود نشان می دهد. به منظور تنظیم فشار گاز خروجی (مصرفر) یک بیج غلاف گردشی در زیر یا بال روی رگولاتور قرار دارد که با سفت کردن آن (درجه فشارهای ساعت) فشار گاز خروجی افزایش یا درجه همخوانی آن فشار گاز مصرفری کاهش می یابد (شکل ۴۶).

شکل ۴۶—با گردش میله هایی که در شکل مشاهده می کنید فشار تنظیم می شود.

در مورد رگولاتور اکسیژن برای اینکه فشار گاز اکسیژن در انواع چون شکری (نرور چون شکری و خم آن) نیابت یابند رگولاتورهای دو طبقه مطابق شکل ۴۷ با کار می رود.

شکل ۴۷—محل اتصال سیلنگ
در این گونه رگولاتورها در دو مرحله فشار گاز کاهش می‌یابد. در یک مرحله فشار گاز 10 برایکم شده، و مثلاً از 15 kg/cm² به 150 kg/cm² می‌رسد. در مرحله دوم، که به تنظیم گردشی با دست قابل تنظیم است از 150 kg/cm² تا 15 kg/cm² فشار مصرفی کاهش می‌یابد و تنظیم می‌شود (شکل ۲-۴۸).

در شکل ۲-۴۹، قسمت داخلی یک رگولاتور برای خورده را مشاهده می‌کنیم.

شکل ۲-۴۹ - قسمت داخلی رگولاتور

۱۲-۱-۲-۱۲ - مشعل‌های جوشکاری: برای اجرای جوشکاری، باید شعله‌ای متمرکز و قابل کنترل داشته باشیم، مشعل‌های جوشکاری شکل ۲-۵۰ را وظیفه را عهده‌دار هستند.

شکل ۲-۵۰
آن‌ها با هم مخلوط شده و از سوراخ سر مشعل که به صورت مخروطی است خارج شده و می‌سوزد و شعله همگر و متمرکز به‌وجود می‌آورد. در شکل ۲۱ چگونگی مخلوط‌شدن گاز‌ها داخل سر مشعل به وضوح قابل دیدن است.

شکل ۱۵ چستی داخلی یک سرمشعل جوشکاری

۳-۱۳ چسته‌های مختلف مشعل جوشکاری:
مشعل‌های جوشکاری دارای قسمت‌های زیر هستند:
۱- دسته مشعل
۲- شیرهای تنظیم گاز اکسیژن و گاز سوختنی
۳- لوله اخلاح
۴- سرمشعل با پستانک

۴-۱۶ انواع مشعل‌های جوشکاری مشعل‌های جوشکاری با توجه به میزان فشار گاز سوختنی که کار گرفته می‌شود به دو دسته تقسیم می‌شوند.

۱- مشعل‌های فشار قوی یا فشار برابر، (شکل ۲۵-۲۶): در این مشعل‌ها فشار گاز اکسیژن و گاز سوختنی با فشار مساوی وارد لوله اخلاح شده و با هم مخلوط نشده از دهانه نازل (پستانک) با سر مشعل خارج می‌شود. عيب مشعل‌های فشار قوی در این است که جناتجه فشار گاز سوختنی کاهش باد تنظیم شعله به هم می‌خورد.

شکل ۵۲-۵۴
مشعل های فشار ضعیف یا انرژیکوری، (شکل ۲-۵۵): در این مشعل ها فشار غاز سوختنی پسبار کم است و فشار اکسیژن از یک انرژیکور به مخلوط غاز سوختنی با فشار بیشتر دمیده می شود و با یک گاز سوختنی مخلوط شده و از دهانه سر مشعل خارج می شوند.

در این نوع مشعل ها اگر حتی فشار غاز سوختنی هم کاهش یابد مکش اجادات شده به وسیله ی گاز اکسیژن موجب جبران گاز سوختنی شده و مخلوط مناسب گاز ها از دهانه سرممشعل به خارج جبران می یابد و تغییرات زیادی در شعله اجادات نمی شود. امور مشعل های انرژیکوری به فشار ضعیف بیشتر مورد استفاده واقع می شود. تا مشعل های فشاری قوی.

شکل ۲-۵۵

۱- نیروی اکسیژن ۲- نیروی استینی ۳- انرژیکور ۴- انرژیکور نازل ۵- کانال عبور غاز ۶- مهره اتصال سرممشعل به تنه مشعل ۷- لولهی مخلوط شده سرم شعله ضعیف ۸- دهانه سرم شعله (نازال) ۹- دسته مشعل

شکل ۲-۵۴

۲-۵۴ مشعل پرکاری: نوازه مشعل پرکاری با مشعل جونکاری در این است که مشعل پرکاری به کم مسیر جداگانه برای هدایت اکسیژن خالص تا مرکز سطح قاعده نازل دارد و با اهم قسمتی روی مشعل این مسیر باز و بسته می گردد (شکل ۲-۵۴). برای پرکاری فلزات می توان از دسته مشعل وسیله استفاده کرد و به جای سر مشعل مشعل پرکاری را روی دسته مشعل بست و یا از مشعل پرکاری بکار چر استفاده کرد.

شکل ۲-۵۳

۲-۵۳ مشعل های بانکاردی اینجا لبه قطعه به وسیله‌ی شعله خنثی گرم می کنیم. وقتی لبه قطعه کاملاً سرخ شد از اکسیژن اضافی را فشار می دهیم. اکسیژن با فلز داغ شده ترکیب شده و آن را سرعتاً اکسید می کند و بردن شروع می شود. با حرکت پیشروی مشعل به طور مداوم قطعه کار در مسير حرکت نازل مشعل پرکاری می شود (شکل ۲-۵۵).

در عمل با مشعل های بانکاردی اینجا لبه قطعه را به وسیله‌ی شعله خنثی گرم می کنیم. وقتی لبه قطعه کاملاً سرخ شد از اکسیژن اضافی را فشار می دهیم. اکسیژن با فلز داغ شده ترکیب شده و آن را سرعتاً اکسید می کند و بردن شروع می شود. با حرکت پیشروی مشعل به طور مداوم قطعه کار در مسير حرکت نازل مشعل پرکاری می شود (شکل ۲-۵۵).
جدول ۴-۲۴ انتخاب سرمشعل در رابطه با ضخامت ورق و فشار گاز

<table>
<thead>
<tr>
<th>ضخامت ورق فولادی بر حسب اینج</th>
<th>PSI</th>
<th>فشار قوی انتکتوری</th>
<th>اندازه قطر سوخاری نازل بر حسب اینج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۱</td>
<td>۱</td>
<td>۱</td>
<td>۵۷</td>
</tr>
<tr>
<td>۰/۱۴</td>
<td>۱</td>
<td>۱</td>
<td>۷۸</td>
</tr>
<tr>
<td>۰/۱۹</td>
<td>۱</td>
<td>۱</td>
<td>۷-۱۰</td>
</tr>
<tr>
<td>۱/۴</td>
<td>۲</td>
<td>۱</td>
<td>۷-۲۰</td>
</tr>
<tr>
<td>۱/۱۵</td>
<td>۳</td>
<td>۴</td>
<td>۱۵-۲۰</td>
</tr>
<tr>
<td>۱/۲۱</td>
<td>۴</td>
<td>۶</td>
<td>۱۲-۲۱</td>
</tr>
<tr>
<td>۱/۳۱</td>
<td>۵</td>
<td>۶</td>
<td>۱۴-۲۵</td>
</tr>
<tr>
<td>۱/۴۱</td>
<td>۶</td>
<td>۷</td>
<td>۲۰-۲۹</td>
</tr>
<tr>
<td>۱/۵۱</td>
<td>۷</td>
<td>۷</td>
<td>۲۴-۲۳</td>
</tr>
<tr>
<td>۱/۶۵</td>
<td>۸</td>
<td>۸</td>
<td>۲۹-۲۹</td>
</tr>
<tr>
<td>۱/۸۵</td>
<td>۹</td>
<td>۹</td>
<td>۳۰-۲۴</td>
</tr>
<tr>
<td>۱/۱۰۵</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۳۰-۱۵</td>
</tr>
<tr>
<td>۱/۱۱۵</td>
<td>۱۲</td>
<td>۱۲</td>
<td>/۱۵۰</td>
</tr>
</tbody>
</table>

۱- بر حسب مقدار گاز مصری در ساعت، به طور مثال ۱۰۰۰۰۰، برای ساعت ۱ از هر کدام از گازها مصرف می‌شود.
۲- با توجه به قطر سوخاری نازل سرمشعل که در جدول ۴-۲۳ با توجه به ضخامت ورق فشار گازها و قطر سوخاری سرمشعل آمده است.
۳- دسته‌ی مشعل های امروزی دارای تعداد کمتری سرمشعل است که در یک جعبه مخصوص جاسازی شده‌اند.

امروزه همراه دسته‌ی مشعل تعداد کمتری سرمشعل وجود دارد. در شکل ۴-۵۶ مشعل چوگشکاری مشاهده می‌شود که به‌وسیله‌ی شیر فریم رنگ گاز استیل باز و سمت می‌شود و سپس آبی رنگ‌یاری مخصوص بازکردن و سمت گاز اکسیژن است و به قسمت انتهای دسته‌ی مشعل شیلی‌گهای گاز استیل و اکسیژن وصل می‌شود.
شکل ۲-۷ جعبهی مشعل جوشکاری و پرینکاری با شعله‌ی گاز را نشان می‌دهد. در این جعبه یک دسته مشعل جوشکاری و جنب سرمشعل جوشکاری با شماره‌های مختلف، که در قسمت در جعبه جاسازی شده است، قرار دارد.

داخل جعبه یک سر مشعل پرینکاری هم وجود دارد که دارای یک شیر آبی رنگ برای تنظیم میزان اکسیژن است و یک شیر با دسته‌ی اهمی برای باز و بستن اکسیژن پرینکاری است. در قسمت بالایی هر سرمشعل های جوشکاری و پرینکاری و گرم کاری مشاهده می‌شود (شکل ۲-۸).

جدول ۷-۲ شماره مشعل با توجه به ضخامت ورق

<table>
<thead>
<tr>
<th>شماره مشعل</th>
<th>ضخامت میلی‌متر</th>
<th>مصرف اکسیژن لیتر در ساعت</th>
<th>لیتر در ساعت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱-۲</td>
<td>۱</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>۲-۴</td>
<td>۲ تا ۴</td>
<td>۳۰۰</td>
<td>۳۰۰</td>
</tr>
<tr>
<td>۴-۶</td>
<td>۶ تا ۸</td>
<td>۵۰۰</td>
<td>۵۰۰</td>
</tr>
</tbody>
</table>

۱- نرخ مصرف سرمشعل مثلاً ۲-۱-۲-۳-۴-۵-۶-
۲- کاربرد با توجه به ضخامت فلز مثلاً تا ۱m
۳- مقدار مصرف لیتر به ساعت گاز مثلاً شماره‌ی ۱۰۰۰

یعنی ۱ لیتر در ساعت
شکل ۲۵۹- سیلندرهای گاز معمولاً به‌هستند.

شکل ۲۶۰- سیلندرهای گاز معمولاً به‌هستند.

اینگونه شیلنگ‌ها با قطر داخلی $\frac{3}{8}$ اینچ و $\frac{1}{4}$ اینچ و $\frac{3}{8}$ اینچ و $\frac{1}{2}$ اینچ و $\frac{5}{8}$ اینچ در بازار وجود دارد.

نحوه $\frac{3}{8}$ آن بسیار سبک و قابل انعطاف است و برای کارهای سبک جوشکاری مناسب است.

نحوه $\frac{5}{8}$ آن برای جوشکاری لوله و پرکاپی مورد استفاده واقع می‌شود.

شیلنگ‌های گاز اکسیژن سبز با آبی رنگ هستند.

شیلنگ‌های استیل قرمز با فهوردهای می‌باشند (شکل ۲۶۱).
شیلنج های گاز ممکن است به صورت تکی مورد استفاده واقع شوند و یا به صورت دو قلو؛ بنابراین اینکه یک شیلنج سبز با یک شیلنج قرمز در قسمت جداره یا استیکی خارجی به هم جسبیده باشد (شکل ۲۶۲).

یک سر شیلنج‌ها به رگولاتور و سر دیگر آنها به دسته‌ی مشعل به طور محكم بسته می‌شوند. برای این منظور از سر شیلنج‌ی مخصوص و بسته‌ی شیلنج مطابق شکل ۲۶۳ استفاده می‌شود که هم از محکم و بودن اتصال و هم از عدم تنها اطمینان کامل وجود داشته باشد.

برای بستن شیلنج از سر شیلنج‌ی مخصوص استفاده می‌شود. سرنخ شیلنج‌های طور محکم در شیلنج برس شده و یا بسته‌ی مخصوص به شیلنج محکم می‌شود (شکل ۲۶۴).

نکته مهم! برای محکم کردن شیلنج به سرنخ شیلنج‌های هیچ‌گاه از سیم استفاده نکنید زیرا موجب بریدشدن شیلنج می‌شود.
19-2-3- میز کار جوشکاری
قطعات کوچک با قسمت‌های کوچک از یک مجموعه اتصالات
از میز کار برای استقرار قطعات استفاده می‌شود و همانطور که
در شکل ۶۵-۲ دیده می‌شود مجموعه‌ای از وسایل مورد نیاز در
دسترس جوشکار قرار دارد.
جوشکار می‌تواند استفاده با نتیجه روز جهاری‌ای به راحتی
جوشکاری نماید.
صندلی جوشکاری یک چهارنفره معمولی است، ولی
روی سطح میز جوشکاری از آمریکا بسته شده تا جوشکاری
روی آن انجام تردد می‌تواند مختصت شعله و پاره سرد و
گرم می‌شود مقابله کافی داشته باشد.
کنار میز جوشکاری یک طرف آب برای سرد کردن
سرمشعل و وسایل جوشکاری که گرم می‌شود استفاده می‌شود.
در بینان کار وسایل و ابزار کار در جای مخصوص قرار داده
می‌شود. این کار از نظر صرفه‌جویی در وقت بسیار مؤثر است.

۱- مشعل جوشکاری
۲- گیر
۳- ابزار
۴- سوخت
۵- چکش
۶- چکش سرخ‌مرگی
۷- عینک جوشکاری
۸- میلهٔ مخفي‌کاری
۹- لبکش
۱۰- جای مفتوح
۱۱- چکش
۱۲- میز جوشکاری

شکل ۶۵- تجهیزات جوشکاری گاز
۲٠ در شکل ۶۶ نشان داده شده است و سیلهای است که با حرکت دادن سنگ فندک روز سطح فولادی آدر جرفا ایجاد می‌کند و با این جرفة ها می‌توان برای روشن کردن مشعل جوشکاری استفاده کرد.
سنگ فندک به مرور زمان و استفاده سالانه شده و کوتاه می‌شود و لازم است قبل از به کارگیری فندک از میزان بودن آن (میزان برون زدنگی سنگ فندک قابل تنظیم است) اطمینان حاصل شود.

نقته‌ای اضافی: شعله را تباد با بیسی با شعله‌های دیگر روشن کردن زیرا شعله به طور ناگهانی با طول بلند روشن می‌شود و ممکن است باعث سوختگی دست و با لباس جوشکار شود (شکل ۶٧).
دستگاه شمعک رومیزی گاز: در کارگاه‌های بزرگ، تعداد زیادی به کار جوشکاری مشغول‌اند و گازها از طریق بست مرکزی تأمین می‌شود. یک دستگاه شمعک رومیزی نصب شده است و گازها از این مسیر به مشعل می‌رسند و دارای قسمت‌های مختلف زیر است (شکل ۶۸)。

۱- محلی برای آویختن مشعل جوشکاری;
۲- شیر فلز و وصل جیران، که با قرار دادن مشعل روی اهم هر دو گاز قفل می‌شود;
۳- شمعک برای روش ردن مشعل.

این وسیله اقتصادی است و به ما کمک می‌کند در مصرف گاز‌ها صرفه‌جویی داشته باشیم، جون یک بر چک شعله را تنظیم کردیم و نوپا بارها و بارها شعله را خاموش و روش کنیم، بدون اینکه نیاز به تنظیم مجدد داشته باشیم.

شکل ۶۹- به محض آویختن مشعل به قلب، شیرهای گاز به طور خودکار بسته می‌شود و شعله خاموش می‌شود و لیی شمعک هم جناب در مقابل سر مشعل روشن است. حال، به محض برداشت مشعل، دوباره گاز‌ها جریان بیدا می‌کند که با مشعل به
شمعک‌های مشعل را روان کردن به دلیل این که به شیرهای اکسیژن و استیل ان روزه نشته مشعل دسته‌ای به تنظیم قب‌لبی می‌سوزد و این شیرها کمتر باز و بسته می‌شود و عمر مشعل بسیار زیاد خواهد بود (شکل ۲۷-۱).

تا این نماده که شمعک مشعل تدبی مشده روی میز به وسیله یک پیچ که قبل از مشعل مشعل تدبی مشده قابل تنظیم است و می‌توان با کم و زیاد و گذارن گاز خروجی از آن شعله قوت‌های با پلد به وجود آورد.

شکل ۲۷-۰

شکل ۲۷-۱

۲۷-۱ سوزن با سوهان سرم‌مشعل: گاهی مشاهده می‌شود که شعله شعله تغییر کرده و طول آن کوتاهتر شده، با این حال شعله شعله مشاهده می‌شود و یک به صورت خارج از مرکز شعله گرفته و یا شعله برا کنده است و خوب تنظیم نمت شود. وجود ذرات اکسید در سوراخ نازل و جنسیت ذرات در دهانه‌ی نازل باعث مشکلات فوق می‌شود و باید به وسیله‌ی سوزن مشعل مخصوص که جنس آن ترم است سوزن مشعل باک شود (شکل ۲۷-۱).
برای هر سر مشعل سوهان مناسب وجود دارد (شکل ۷۲). تمیز کردن سطح مشعل با جتاب صاف هم باعث باکسشن سطح مشعل می‌شود (شکل ۷۲).

شکل ۷۲

تذکر مهم‌ای هرگز با سوهان معمولی سطح قاعدی سرمحل را برداخت نکنید. در صورت ضرورت از سوهان مخصوص استفاده کنید. برای تمیز کردن سوراخ نازل هر از سوزن‌های مخصوص که در قطر‌های مختلف مناسب با سوراخ هر نازل ساخته شده است استفاده کنید.

شکل ۷۳
5- شیر خروجی اکسیژن از مشعل را بینند (شکل ۲-۱۳۴) و به خاطر داشتن بافتند که فشار گازها به وسیله صفحه مداوم نشان داده می‌شود زمانی درست تنظیم می‌شود که گاز در حال مصرف باشد و در زمان بسته بودن شیر خروجی گاز، کاهش فشار را نشان نمی‌دهد.

6- بیش تنظیم فشار استیلین روی رگولاتور استیلین را کاملاً باز کنید (در جهت خلاف حرکت عقربه‌های ساعت) (شکل ۲-۱۳۵).

7- شیر خروج گاز استیلین از رگولاتور به شیلدگ باژ بانند.

8- در حالی که اطراق اثره با مشعلی روشن نبایند بهآرامی شیر فلکه‌ی کبسول را باز کنید. فقط نیم دور کافی است.

فشارسنج اولی فشار گاز درون کبسول را نشان می‌دهد.

تذکر مهم! درصورتی که شیر فلکه‌ی استیلین با آجای مخصوص باز می‌شود آجای باید روی کبسول بماند تا در موقع خطر به راحتی با یک حرکت گردشی بسته شود (شکل ۲-۱۳۶).


شکل ۲-۱۳۷

در شکل ۲-۱۳۸ چون گاز آرام از مشعل خارج می‌شود نمی‌تواند با هوا به اطراف خوشه مخلوط شود. در نتیجه مشعل با دود همراه است و ذرات کربن در هوا پراکنده می‌شود و روی سر و صورت جوشکار و لباس او قرار می‌گیرد و موجب بد منظری شدن جوشکار و فضای جوشکاری می‌شود.

شکل ۲-۱۳۸

شکل ۲-۱۳۹

با بیج تنظیم، میزان خروجی گاز استیلن را کم کنید.

شکل ۲-۱۳۹

با بیج تنظیم، رودی مشعل گاز خروجی را زیاد کنید. با شعله از مشعل فاصله بگیرید (شکل ۲-۱۳۹). چون هوا را با خوشه مخلوط می‌کند، شعله زرد رنگ است.
شیر گاز را به اندازه‌ای بزیربای تنظیم کنید که شعله‌ی زرد و بدون دودی را مشاهده کنید. مرافق باندیک به شعله‌ی آرامی بزیربای شعله‌ی احیا مشاهده شود.

شکل ۱۴۱- شعله‌ی احیا مشاهده شود.

‌شعله‌ی اکسیژن روي دسته‌ی مشعل را به‌آرامی بزیربای کنید تا شعله‌ی کوتاهتر و دارای سفت قسمت شود. مطالب شکل ۱۴۱- شعله‌ی احیا مشاهده شود.

شکل ۱۴۲- شعله‌‌ی را با بستن شیر استیلین و سپس شیر اکسیژن روي دسته‌ی مشعل خاموش کنید. جنین بار این ۱۵ مرهاله را اجرا کنید تا به مهارت کافی برسید.

شعله‌ی گاز ویژگی‌های انواع شعله‌ها در جوشکاری با شعله‌ی گاز

سه نوع شعله به‌وسیله‌ی مشعل‌های متفاوت قابل تنظیم است.

۱- شعله‌ی احیا با سوختن ناقص؛ (شکل ۱۴۲-۲).

۲- شعله‌ی خنثی با سوختن کامل؛ (شکل ۱۴۳-۲).

۳- شعله‌ی خنثی با سوختن ناقص است (گازهای تولید شده توسط سوختن دارد).

حرارت و اکسیدهای مشعل‌های درجه دوم

\[ \text{C}_2\text{H}_4 + \frac{5}{2} \text{O}_2 \rightarrow 2\text{CO}_2 + \text{H}_2\text{O} \]

سوختن کامل = گازهای تولید شده قابلیت سوختن ندارد.
شکل ۱۴۵ - شعله‌ای خنثی: جان‌چه به شعله‌ی احیا مایل
شکل ۱۴۴ - است قسمت ممایز
اکسیژن اضافی باعث اکسید کننده شدن شعله می‌شود.

شکل ۱۴۶ - شعله احیا

مرز بین وجود با عدم مخروط وسطی شعله با حد فاصل
یعنی این که شعله دور قسمتی است با هر قسمتی شعله‌ی خنثی
نامیده می‌شود و در این حالت می‌گوییم شعله‌ی خنثی تنظیم نشده
است. در این شعله مقدار اکسیژن و استیل و نرخ خروجی از سرمحل
با هم مساوی است: $P = O_2 \times C_2H_2 \times \frac{2}{7}$. به علاوه یک و نمی‌برای
اکسیژن خروجی از سر مشعل هم از هوای اطراف شعله تأمین
می‌شود.

شکل ۱۴۲-۱: شعله‌ای اکسیدی با شعله‌ی اکسید کننده; (شکل
٢-١٤٧ شکل

- برای خاموش کردن شعله ابتدا نیاز گاز سوختنی را بسته و سپس نیاز گاز اکسیژن را می‌بندیم (شکل ١٤٧-٢).

از شماره ١٥ این دستورالعمل تا شماره ٢٠ را چندین بار تکرار کنید تا مهارت کافی در روشن کردن و تنظیم شعله بی‌عدالتی داشته باشید.

کاربرد شعله‌ی خشته: این شعله بیشترین کاربرد را دارد.

و برای جوشکاری انواع قطعات فولادی به‌کار گرفته می‌شود.

در موقع جوشکاری گاز‌های حاصل از سوختن استیل، محافظت‌های حوضچی مذاب و اطراف آن را در مقابل اثرات سوی اکسیژن و ازت انتقال به‌همه‌ی دارد.

همچنین شعله‌ی خشته برای گرم‌کاری و لحم‌کاری سخت نیز مورد استفاده است و می‌توان با توجه به حرفه‌نامه‌ی جوشکاری که راه‌بندی استفاده از سرمحل‌های گازی می‌گردد و با پیشگیری استفاده نمود. در جدول ۲-٩ باراه‌رهای مختلفی، شعله‌ی شماره‌ی سرمحل آدمه است.

جدول ٢-٩- ضخامت ورق و شماره‌ی سرمحل در جوشکاری ورق‌های فولادی

<table>
<thead>
<tr>
<th>ضخامت ورق به mm</th>
<th>٠/٨</th>
<th>١</th>
<th>١/٢</th>
<th>١/٥</th>
<th>٢</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان برای یک پک متر</td>
<td>١٠٠</td>
<td>٣</td>
<td>٢</td>
<td>٢</td>
<td>١</td>
</tr>
<tr>
<td>سرعت برحسب متر در ساعت</td>
<td>١٠٠</td>
<td>٣</td>
<td>٢</td>
<td>٢</td>
<td>١</td>
</tr>
<tr>
<td>پستانک مورد استفاده</td>
<td>٠/٨</td>
<td>١</td>
<td>١/٢</td>
<td>١/٥</td>
<td>٢</td>
</tr>
<tr>
<td>گاز لازم برای یک پک متر جوش</td>
<td>٣ /٦</td>
<td>٥</td>
<td>٧ /٥</td>
<td>١٢</td>
<td>١٨</td>
</tr>
</tbody>
</table>

٢-٨-۲ شعله‌ی اکسیژن: جنگله نسبت گاز اکسیژن به گاز استیل (١٠:١) و گاز تازه یک پک باندی شعله‌ی حاصل را شعله‌ی اکسیژن دارد. گاز‌های فولاد با این شعله باعث ایجاد حرارت نشده و در خود یافتن فولاد را با می‌سوزاند و جوش حاصل اکسیژنی و شکندن‌های است.
شعله‌ای اکسید‌کننده در جوشکاری کاربرد جدی ندارد. فقط در مواردی از لحیم سخت و به‌صورت کم‌روی ورق‌های نازک مثل ایجاد سوراخ در قسمتی از ورق و نظاره آن مورد استفاده واقع می‌شود (شکل ۱۴۹).

شکل ۱۴۹

باید خاطرنشان ساخت که در پرشه‌کاری با شعله، گاز اکسیژن اضافی از مسیر جداگانه روی فولاد سرخ شده دمیده می‌شود و پرشه‌کاری انجام می‌شود و به شعله‌ی پرشه‌کاری نمی‌توان شعله‌ی اکسید کننده اطلاق نمود. به شکل ۱۵۰ جدول ۶ به ۱۵۰ در این خصوص توجه کنید.

شکل ۱۵۰

جدول ۱۵۰-۱-۲ بدلیل بسیار زدن شعله:

<table>
<thead>
<tr>
<th>رنگ انداز</th>
<th>علت</th>
<th>رنگ انداز</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>مسوم و منشأ سرمایه</td>
<td>تمرکز کردن با سوزن</td>
<td>مخصوص</td>
<td>۱</td>
</tr>
<tr>
<td>خرابی عضویکن سوزن</td>
<td>تعمیر با تعریض دسته‌ی مشعل</td>
<td>دسته‌ی مشعل</td>
<td>۲</td>
</tr>
<tr>
<td>ناهنجاری عضویکن شار</td>
<td>تنظیم کردن فشار گازها</td>
<td>حالت کارぬ</td>
<td>۳</td>
</tr>
<tr>
<td>افزایش کیسول اکسیژن</td>
<td>تعویض کبسول</td>
<td>تعویض کبسول</td>
<td>۴</td>
</tr>
</tbody>
</table>

۱- بعداً به آن خواه‌یم برداخت.
تذکر مهمی! بسزای شعله ممکن است با داشتن هنگام جوشکاری، گوشه‌های داخلی شکل ۲-۱۵۲ ادامه یابد. سپس گرمی و ممکن است ناشی گذشت. استفاده از سوپاب یک طرفه در مسیر گاز سوختنی به وجود کسول حفاظتی که بهانه‌داری کافی آب در آن باندی در مسیر گاز از الزامی است (شکل ۲۱-۱۵۱).
در این هنگام می‌توان با فروبردن سرمحلع داخل آب در حالی که کمی گاز اکسیژن جریان دارد آن را خنک کرد (شکل ۲-۱۵۳).

تأخیر افتادن شعله: جنایتی که شعله در انتای کار به تتا دارای صداه باشد به این حالت به تأخیر افتادن شعله گویند. در اینجا به تأخیر افتادن در جدول ۱۱-۲ آمده است. شعله‌های صدای بیشتری موجب ضرر می‌شود و مداوم را به اطراف بخش ما کنن. در نتیجه گروه جوش نامنظم می‌شود.

جدول ۱۱-۲: دلایل صداه باشد در شعله

<table>
<thead>
<tr>
<th>رفع اشکال</th>
<th>علت</th>
<th>ردهبندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>استفاده از سرمحلع کوچکتر</td>
<td>فشار گاز‌ها کم‌تر از اندازه پاسخ</td>
<td>۱</td>
</tr>
<tr>
<td>تنظیم فاصله سرمحلع با حوضه‌های مذاب</td>
<td>تمام سرمحلع به کار</td>
<td>۲</td>
</tr>
<tr>
<td>سرمحلع بیشتر از معمول</td>
<td>گرم شدن سرمحلع</td>
<td>۳</td>
</tr>
</tbody>
</table>
| تمرکز صورتی سرمحلع با سوزن مناسب | وجود جرقه در دهانه سرمحلع | ۴